September 15, 2005 14:41 WSPC/Trim Size: 9in x 6in for Rewelume bickel-nair-final-1

CHAPTER 1

NETWORK TOMOGRAPHY:
A REVIEW AND RECENT DEVELOPMENTS

Earl Lawrencé, George Michailidi&, Vijayan N. Naif and Bowei XF

“Statistical Sciences Group
Los Alamos National Laboratory
Los Alamos, NM 87545

earl@lanl.gov

b Department of Statistics
The University of Michigan
Ann Arbor, MI 48109-1107
{gmichail,vni} @umich.edu

¢ Department of Statistics
Purdue University
West Lafayette, IN 47907
xbw@stat.purdue.edu

The modeling and analysis of computer communications nés\give rise to a
variety of interesting statistical problems. This papeufges on network tomog-
raphy, a term used to characterize two classes of large-goarse problems.
The first deals with passive tomography where aggregateatataollected at
the individual router/node level and the goal is to recoxahgevel information.
The main problem of interest here is the estimation of thgirilestination traf-
fic matrix. The second, referred to as active tomographysdeith reconstruct-
ing link-level information from end-to-end path-level nsegements obtained by
actively probing the network. The primary application ifsthase is estimation
of quality-of-service parameters such as loss rates aray af$tributions. The
paper provides a review of the statistical issues and demedats in network
tomography with an emphasis on active tomography. An aafiidio to Internet
telephony is used to illustrate the results.
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1. Introduction

There has been a great deal of interest recently, in bothrthmeering and re-
search communities, on the modeling and analysis of conatians and com-
puter networks. This paper provides a review of network tgraphy and de-
scribes some interesting statistical issues, challerayabsrecent developments.
The term network tomography, introduced by Vardi (1996% baen used in the
literature to characterize two broad classes of inversblpnos. The first is pas-
sive tomography where aggregate data are collected at therrevel. The goal
is to disaggregate these to obtain finer-level informatidre most common ap-
plication, which was the original problem studied in Vartid96), is estimation
of the origin-destination traffic matrix of a network. Thecead is active tomog-
raphy where the network is actively “probed” by sending masKrom a source
to several receiver nodes, all located on the periphery®hgtwork. Here one
can collect only end-to-end path-level information, anel goal is to use this to
recover individual link-level information. We will proveda brief review of both
of these areas but focus more on the latter, as this has beenhifect of our own
research. There are also several other interesting Btatiptoblems, especially
related to network data obtained from a single network lih&t arise in the study
of communications and computer networks. These will notddibcussed here.
See, however, the collection of papers in Adler et al. (19P8)k and Willinger
(2000) and references therein).

The work in network tomography has been stimulated by theasiehfior so-
phisticated techniques and tools for monitoring netwotkzation and perfor-
mance by network engineers and internet service provid8F)(This need has
increased further in recent years due to the complexity of services (such as
video-conferencing, Internet telephony, and on-line ggrtteat require high-level
quality-of-service (QoS) guarantees. The tools and teghes are also important
for network management tasks such as fault and congestientam, ensuring
service-level-agreement compliance, and dynamic reptiaaagement of Web
services, just to name a few (Coates et al. (2002a)).

There are two categories of methods in network tomographyofle-oriented
methods that collect packet and network flow informatiorspey through moni-
toring agents located at local network devices such asmswitches, and hosts;
and (ii) path-oriented methods that collect informationattconnectivity and la-
tency in a network by actively sending probe packets thrahgmetwork from
nodes located on its periphery. The first category of todgy@ared towards net-
work operators who use the information for capacity plagrand management
decisions. Their main shortcoming is that they require s€¢e all the network
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Fig. 1. Layout of a small network showing routers/nodes amic!|

elements (routers/switches) in order to deploy monitoaggnts to collect the
information. Furthermore, the amount of data generatecbeasubstantial. The
second category of tools collect data on network perforraamneasures that are
indirectly related to the parameters of interest and do¢setuire cooperation

from the internal nodes of the network. For both types, hamethe collected

data have to be appropriately processed (through the eolafidifferent types of

statistical inverse problems) to obtain the informatiorimeérest. (Castro et al.,
2004).

We provide here a brief background on network traffic flow s thaders can
follow the discussion. A more detailed and accessible guation can be found
in Marchette (2001). Throughout, we represent a network gsaphGg = (V, €)
whereV is the set of nodes arftithe set of links. Figure 1 is an example of a small
network with computers/workstations connected by rowdaslinks. When a file
is transferred from one location in the network to anothergioe node to an-
other), the file’s content is first broken into pieces, calpettkets. Information
about origin-destination, reassembly instructions (sushquence numbers), and
error-correcting features are also added to the packetofigm-destination in-
formation is used by the network elements (routers and begfcto deliver the
packets to the intended recipient. One can think of the reiisternal nodes in
Figure 1) as the intersections in a road network. Packetgaeeed at routers,
awaiting their transmission to the next router accordingptime protocol (first-in-
first-out is common, but there are others). Physically, aigumnsists of a block
of computer memory that temporarily stores the packethdfqueue (memory)
is full when a packet arrives, it is discarded and, dependmghe transmission
protocol, the sender may or may not be alerted. Otherwigaits until it reaches
the front of the queue and is forwarded to the next router emtaly to its desti-
nation. This queuing mechanism is responsible for obsqraedlet losses and, to
a large extent, for packet delays.
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2. Passive Tomography
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Fig. 2. A small network and its associated origin-destoratraffic matrix.

The goal in traffic (or origin-destination) matrix estinttiis to obtain infor-
mation about the distributions of traffic flowing frovj to V; for all pairs of nodes
1 andj in the network. Of course, one would also have to study varsmurces
of variation such as time-of-day, day-of-the-week, anceotffects to character-
ize the traffic pattern. This information is used by netwanlgieeers for capacity
planning and network management operations.

In this application, monitoring agents are placed at théviddal nodes, and
data on total number of packet counts traversing the nodecdliexted. The pack-
ets do contain origin-destination (OD) information, bueda volume of the data,
it is impractical to access individual packets to colleds ihformation. So only
total packet count data are available and are obtained tisa§imple Network
Management Protocol (SNMP).

Let |V| and D denote the number of nodes and OD pairs in the network re-
spectively. Let us restrict attention to a fixed time peridteve the traffic patterns
are fairly homogeneous. L&t be a|V| column vector containing the number of
packets traversing all the nodes in periotbr ¢t = 1,...,T during the time of
study, withY” being the average number of packets in the entire periodllFitet
R be a|V| x D routing matrix (corresponding to the permissible routesulh
the network), and leK be aD column vector that represents the unknown OD
flows traversing the network. The routing matrix can be dwvieistic (entires are
0-1) or random (entries are probabilities); the latternefe the case with multiple
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paths in a network due to load balancing considerationsrdiing matrix actu-
ally changes over time, usually on the order of a few hourgg®a (1997)), and
is typically estimated by computing shortest paths usimglitterior Gate Proto-
col link weights that indicate congestion levels, togethigh known information
about the network topology. An example of the traffic matriglgem is shown in
Figure 2.

We can then write

Y = RX.

The statistical inverse problem is to reconstruct the ithistion of X from the
aggregate level datg. In general,D >> |V|, usuallyD = O(|V|?), so this is
a highly ill-posed inverse problem and cannot be solved autradditional as-
sumptions or regularization. We provide below a review ofsal approaches in
the literature for addressing this. See also Papagianhaki@004) for a discus-
sion on why direct data collection and estimation¥ofs intractable using today’s
monitoring technologies.

Vardi (1996) modeled the traffic flows as Poisson, i.e., A& are indepen-
dent Poisson random variables with meag's. The Poisson assumption provides
additional estimating equations because the varianceuial ¢g the mean, so the
higher order information can be used for estimation. Vat®9g) studied max-
imum likelihood estimation using the EM algorithm. Howevas shown there,
the EM algorithm may not converge to the MLE. More importgnthe algo-
rithm becomes computationally intractable for large neksoVardi (1996) stud-
ied several heuristic methods as alternatives, among whé&following method-
of-moments estimation was the most promising. Recall¥hatj = 1, ...|V| pro-
vide |V| estimating equations. In addition, the sample variancescamariances
Sij = S, Vie — Yi][Y;js — Y;]/(T — 1) provide anothew equations.
Note thanE(S;;) reduces to the expected value of the variance of the counts in
the shared links, and so it is again a linear function of Xlie. Hence, letting
S denote a vector of the elements of the variance-covariaratexrand letting
A = (A1, ..\ jg))", where|E| is the number of edges in the network, we have the

linear model
E(Y) R
= A
E(S) B
for a suitable matrixB. Now, the data on the left-hand side are approximately
normal wher!" is large, so we can use the resulting large-sample normaithe
and weighted-least squares to estimatnd develop other inferential procedures.

We note that Vardi proved identifiability for all practicaétworks. A Bayesian
approach under the same framework was considered in TebaddiVest (1998).
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The goal was slightly different, dealing with predictiontbg actual OD traffic
counts instead of the distribution of the counts. The Poigssumption implies
that the variance oKX is proportional to the mean. Cao et al. (2000) relaxed this
assumption by considering a general model of the fotm(X) < E(X)* and
developed estimation methods.

This first generation of models do not work well in estimatihg distribution
of X in high speed networks as they are very sensitive to the gssums (Pois-
son, normal with a specific mean-variance relationshipjcwHid not quite hold
for real network traffic data (Medina et al. (2002)). This ke&sto a new genera-
tion of models that employ extra information or other asstioms. The two most
prominent approaches are tioenogravitynodel (Zhang et al. (2003a and 2003b))
and the method of routing changes (Soule et al. (2004)). dimegravity model
is based on the premise that the OD flaWi, j) between nodesand; is propor-
tional to the total amount of traffic departing nogeX (-, j) = >, X (4, ), and
the total amount of traffic entering nodeX (¢, -); i.e. X (4, 5) o< X (4,-) x X (-, 5)
(Zhang et al. (2003a)). This model assumes complete indepee between the
sources and destinations, which tends to be violated inbdzaek networks due
to the so-called hot-potato routing policies adopted byr thegerators (operators
offloading peering traffic at the nearest exit point). A madifion of the sim-
ple tomogravity model capturing such issues was also pexposZhang et al.
(2003a). Another modification that embedded the tomogranddel in a regular-
ization framework was proposed in Zhang et al. (2003b), wiiee problem was
formulated as

min|[Y — RX |3 + N> K (X|X’), subjecttoX > 0,

where X" is the solution to the traffic estimation problem under theegalized
gravity model, K (X |X’) the Kullback-Leibler divergence measure ahd|| de-
notes theL, norm. In contrast, the route change method (Soule et al (2@04
tempts to overcome the under-constrained nature of thdgaolyy manipulating
the link weights and thereby inducing additional routingricas R.

A third generation of traffic matrix estimation methods imporated temporal
considerations, namely data are obtained overl, ..., T periods and the goal is
to estimate the temporal evolution of the OD flows. Cao et2100) developed
two approaches for estimating the parametetX afs they evolved over time. The
first was based on a a moving window with a locally time-honmagris approach
within each window while the second used a more formal temipoodel. Soule
et al. (2005) proposed the following state-space model:

Y;g:RXt—f—ut, t:1,"',T (21)
Xt = Othl—Fet, t= 1, ,jﬂ’7 (22)
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where the first equation is the traditional traffic matrix rabdvith «, represent-

ing measurement error, and the second equation posits biatim@oral model

for the underlying traffic state as well as spatial dependdrgween OD flows

through the non-diagonal elements of thematrix, ande; captures the traffic

system noise process. Liang et al. (2005) proposed a mdtficaf the above

model, and among other things, allowed for occasionallgadimeasurements for
selected OD flows that aid in calibrating the parametersefitbdel.

The traffic matrix estimation problem has proved useful towoek operators,
especially for capacity planning purposes. In fact, manyhef proposed tech-
nigues originated from telecommunication research graysh as AT&T and
Sprint Labs and have been applied to networks involving upO@0 nodes. The
ill-posed nature of the problem requires the imposition afious modeling as-
sumptions that in many cases have had a negative impact an¢heacy of the re-
sults (Medina et al. (2002), Roughan (2005)). The focus theeyears has shifted
to understanding both the temporal and spatial varialfi@D flows, as attested
to by the latest models. Some of the research challengdsaie quest for mod-
els that can capture more accurately the characteristited®D flows in today’s
high speed networks, fast and scalable estimation techsignd the simulation
of realistic traffic matrices (Roughan, 2005).

3. Active Tomogr aphy

Sitterson (comp sci)

Venable (chem Craige (dorm)

Davis (library’

=

Hinton (dorm)

McColl (business) Old East (dorm)

Tarrson (dentistry, Everett (dorm)

Rosenau (public health) Undergrad Lib (wireles

Smith (stat) Phillips Machine Room

Greenlaw (english) South Bldg (admin)

Fig. 3. The physical topology of the UNC campus network.

A second class of problems deals with estimation of the tuafiservice
parameters of the network such as delays and loss ratesmdividual link/router
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level. This information is used to characterize and montiter performance of
the network over time, detect congestions or other anomailithe network, and
ensure compliance with service-level agreements. Thedliffiand the challenge
arise from the fact that many service providers do not ownethiére network
and hence do not have access to the internal nodes. Activegtaphy provides
an interesting and convenient alternative by “probing” tieéwork from nodes
located on the periphery and using this to recover inforomatibout the internal
links.

3.1. Background and Probing Experiments

To describe the details, consider the network shown in Eidurlt depicts part
of the campus network at the University of North Carolina. Wit come back
to a real application dealing with this network, but in théxson we will use it
to describe the active tomography problem. We can studyéhfemnance of the
internal links of this network by sending “probe” packetsrir a source (in this
case Sitterson) to all the other nodes on the periphery oh#teork (receiver
nodes). Special equipment placed on the source and reoeiges is used to send
the packets and collect end-to-end information on lossdslatays. The packets
can be sent from the source node to the receiver(s) usingcastror multicast
transmission protocol. In a unicast protocol, the packetsant to one receiver at
a time; however, such schemes cannot estimate all the attiémk-level param-
eters. In multicast protocols, packets are sent simultagigdo any specified set
of receivers. The higher-order information in multicadtesmes (performance of
losses and delays in shared links) allows one to reconstrigchal link-level in-
formation. Some networks have turned off multicast traissioin due to security
reasons. In such situations, back-to-back unicast schewhese packets are sent
within nanoseconds of each other to two or more receivev® baen proposed in
order to mimic multicast transmissions (Tsang et al., (2003

The logical topology for the probing experiment associatéth this UNC
campus network is shown on the left panel of Figure 4. Thisasponds to a tree
topology with source node O (Sitterson) at the top and receiedes 4, 5, 6, 7,
8, 10, 11, 12, 13, 14, 15, 16, 17, and 18 as the leaves. Notevthadin observe
only end-to-end measurements (0-4, 0-10, 0-15, etc.) aefosnd delays, and we
have to use this information to reconstruct all the intetimdd-level information
(0-1, 1-2, 2-9, etc.). This is the inverse problem. In pagtthe number of nodes
can vary from about a dozen for small area networks (such ampus network)
to several hundred in wide area networks. However, the tigasrs can reduce
the size of the network by collapsing the links (combinimdc§i and nodes) if they
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are interested in just a coarse investigation of the netwlrttetailed study will
require looking at all the nodes.

The traditional approach to probing experiments has besadian full multi-
cast transmission where the probes are sent to all the srséivthe network (or
back-to-back unicasts intended to mimic the multicast swhe The difficultly
is that this scheme is quite inflexible. One rarely wants todsthe same num-
ber of probes to all the receiver nodes. Rather, we want tdheeta investigate
different regions of the network with different intens#tiand even possibly at
different times. In Xi, Michailidis, and Nair (2005) and Laswnce, Michailidis,
and Nair (2005a), we have proposed the use of a flexible cfga®bing experi-
ments (referred to as flexicast experiments) for active gmayshy. This consists of
C = {Ch, Ny}, a collection of sub-experiments, with probe sizeNV;, that lead
to identifiability of all the link-level parameters. The imlual sub-experiment
C), covers only part of the network and by itself cannot estinadit¢the param-
eters in the subnetwork. However, by judiciously desigrtimg subexperiments,
we can estimate all the parameters in the entire networktefést. This class of
experiments is particularly useful in network monitoringave we want to study
different subregions of a network depending on where anesyauch as conges-
tion, occur.

We have developed necessary and sufficient conditions wvideh the flexi-
cast experiments lead to identifiability (estimability)adf the link-level parame-
ters. We first need the notion oftacast scheme and a splitting node. lk-aast
scheme, a probe packet is sent to a specified det@deiver nodes. It is uniquely
specified by the receiver nodes. For examplé, 16,17, 18) and (4, 5,10, 11)
are two four-cast schemes for the network in the left panElgidire 4. A splitting
node, as the name suggests, is an internal node at whiekcheme splits. For
example, the four-cast schenfis, 16, 17, 18) splits at node 9 whilé4, 510, 11)
splits at nodes 1,2, and 3.

Proposition: Let C be a collection of probing experiment§’;,, N, } and7 be a
general tree network topology. Then, all the internal liogd rates are identifiable

if and only if (a) every internal node is a splitting node foneC), € C and (b)

all receiver nodes are covered 8y The same conditions are also necessary and
sufficient for estimating link delay distributions provilthey are discrete.

Proofs can be found in Xi et al. (2005) and Lawrence et al. $200Addi-
tional conditions for identifiability of continuous delaysttibutions are given in
Lawrence (2005).

To get some insight into the Proposition, consider the Blgiapology (tree)
on the left panel of Figure 4. Suppose tliaconsists of the following three
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subexperiments®; = (4,5,6,7,8), Cy = (10,11,12,13,14,15), andC5 =
(15,16, 17,18). All the receiver nodes are covered, and 2, 3, and 9 are split-
ting nodes forC,, Cy and C5 respectively. However, the internal node 1 is not
a splitting node, so this experiment will not be able to rezzaadl the link-level
parameters. A modified experiment wiffy as before and, = (10, 15),C% =
(11,12,13,14,15), and C}, = (16,17,18) will allow for estimation of all the
parameters. Of course, there are many other ways of modithia original ex-
periment to get identifiability.

10 1112131

15 16 17 18 4 5 6 7

Fig. 4. The logical topology for the UNC study (left); A 3-llysymmetric binary tree (right).

This raises the question of whether there are “optimal” apphes to con-
structing the flexicast experiments. This is a difficult digsin general, as there
are many ways to define optimality. From the point of view afistical efficiency,
a multicast scheme that sends probes to all the receivdre imttwork is the most
optimal as it provides the highest order of dependence arttumghared links
and hence is most informative. However, as we have alreathdnib is not very
flexible. Moreover, it generates a lot of probing traffic. Angothe flexicast ex-
periments, a collection of bicast (or two-cast) and unisasexperiments has the
least data complexity since the highest dimension is thatwéast scheme which
is multinomial with dimension four. For such a collectiomeocan findminimal
experiments (smallest collections) that lead to identititglof all the internal link
parameters as follows: (a) For each internal nedese exactlyonebicast paitb
whose splitting node is; (b) Choose these bicast pairs to maximize the number
of receiver nodes that are covered; and (c) Choose unichstrss to cover the
remaining receiver nodesc R that are not covered by the bicast pairs.

To understand the details, consider the three-layer syriméary tree in the
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right panel of Figure 4. The full multicast experiment sepdskets to all the seven
receiver nodes and hence is a seven-dimensional multih@xperiment with
27 outcomes. A bicast experiment can be based on all possibie (24 pairs).
However, a minimal experiment that can estimate all theriatelinks requires
only three bicast pairs, for example; = (4,5), Co = (6,7) andC5 = (5, 6).
This is not unique as we can repla€g by C, = (4, 7) or several others.

The active tomography problem has been studied by seveta&tin the lit-
erature. The problem for loss rates was formulated in Caaztral. (1999), where
the multicast transmission scheme was also introducedraalgjarithm that com-
putes estimators that are asymptotically equivalent tdthES was derived. The
problem for delays was discussed in Lo Presti et al. (200Bgreva heuristic al-
gorithm was proposed for calculating a nonparametric egérof the link delay
distributions. Liang et al. (2003) developed a pseuddlilik@d approach for the
delay problem by considering all possible pairwise probesfthe full-multicast
experiment. Shih et al. (2003) presented an estimator édodtk-to-back probing
scheme that models link delay using a point mass at zero amiterfiixture of
Gaussian distributions.

3.2. Inferencefor Loss Rates

Inference for loss rates has been studied in the literatndeuthe following
stochastic framework. LeZ,.(m) = 1 if the m-th probe packet sent from the
source node reached receiver node R, the set of all receiver nodes, and 0
otherwise. Define hypothetical random variables as folloWgm) = 1 if packet
m traverses successfully link € £, the set of all links, and O otherwise. The
collected data are analyzed under the following model (et al., (1999), Lo
Presti et al. (2002), Castro et al. (2003), and others). f@iddss rate problem,
let o;(m) = P(X;(m) = 1), i.e., the probability that the probe packet traverses
successfully the link between nodgg) andi, and reaches nodec 7 — {0}. It

is assumed that th¥;(m)’s are independent acrosandm. Furthera; (m) = a4

for all probesm (temporal homogeneity). The®(Z,.(m) = 1) = ep(o,r)s-
Further,P(Xj (m) =1,Vje D(’L)) = Hsep(07i)a5 X Hjep(i)ozj.

Some comments about these assumptions are in order. Thererhpmo-
geneity assumption is not critical as the time frame for ttebjng experiment is
in the order of minutes, but the effect of spatial dependenests further study
as examples using the network simulator tool and real dédarsdicate.

Recall that the flexicast experimantis made up of a collection of indepen-
dent subexperiments),. Each subexperiment is/acast experiment (for some
k), so it can be viewed asfadimensional multinomial experiment. More specif-



September 15, 2005 14:41 WSPC/Trim Size: 9in x 6in for Rewelume bickel-nair-final-1

12 E. Lawrence, G. Michalilidis, V.N. Nair and B. Xi

ically, each outcome is of the forg¥,., ..., Z,, } whereZ,, = 1 or 0 depending

on whether the probe reached receiver noder not. LetN,, .. .., denote the

number of outcomes corresponding to this event, angJet .., be the proba-

bility of this event. Then the log-likelihood for the expmentC}, is proportional

0 Y(ry,...,r) 108(N(py ....r,) @nd that forC is the sum of the log-likelihoods for
the individual experiments. However, the., . ,,'s are complicated functions
of the as, the link-level loss rates, so one has to use numericalodstto obtain

the MLEs.

This belongs to the class of missing data problems, so thealgidrithm is a
natural approach to computing the MLEs (Coates and Nowdl);20oates et al.,
2002; Castro el al., 2004; Xi, 2003). Xi et al. (2005) develdthe structure of the
EM-algorithm explicitly for flexicast experiments des@ibabove. In our experi-
ence, the EM algorithm works well when coupled with a colmtbf bicast and
unicast experiments for small to moderate networks. Fgelaetworks, however,
they are computationally not practical.

A class of fast estimation methods based on least-squarebden devel-
oped in Michailidis, Nair, and Xi (2005). This is done by tséorming the loss-
estimation problem to a linear inverse problem as followsngider the the 3-
layer symmetric binary tree in the right panel of Figure 4 anppose we use
a three-cast experiment to the receivétss, 6). There are eight possible out-
comes(1,1,1),(1,1,0),(1,0,0),...(0,0,0); denote the corresponding number of
the outcomes bW, 1.1y, V(1,1,0) and so on. We can ignore the last one as there
are only seven linearly independent observations. Con#lideone-to-one trans-
formation of these seven events to the followitig:1, 1), (1,1, +), (1, +, +), -..
where a '+’ indicates either a "1’ or a '0’. The new outcomes abtained by
replacing all the ‘0's with "+'s. Let)M(; ; ;) denote the number of these out-
comes. Now, ifN;, denotes the total number of probes for the subexperiment
h, we can writeE(M; ;) as N, times the product of appropriate link-level
a’s. For instance,l(M,1,4)) = Nparaeauas. Similarly, E(M 4 1)) =
Npoiasasagag. This expression where the expectations are products afhe
propriate link-level loss rates holds in general for dnycast experiment. This
suggests fitting a log-linear model to the estimated prdibaisi Y(sz)
M(’gh_“ik)/]\fh. In other words, ift’" denotes the vector of estimated probabili-
ties for subexperimerit, then

vh = RhgM 4 ¢t
wheres; = log(a;), R" is a matrix of ones and zeros that depend on the logical

topology of the subexperiment antlis a vector of errors. The expected value of
the errors tends to zero as the probe 8ize— co. Also, the errors are correlated
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in general, although the variance-covariance structunebesobtained easily due
to its block-diagonal form.

Now, by stacking up the vectors &f"s for all the subexperiments, we get a
linear system of equations that can be used to estimateeaihtarnal link-level
parameters;s. The ordinary least-squares algorithm provides a noatite and
very fast estimation scheme. Since #fe are correlated, a more efficient esti-
mation scheme is based on iteratively-reweighted LS. Theseother schemes
and their properties are studied in Michailidis et al. (2006was found that the
IRWLS estimators are very close to the MLEs even in reasgrahhll samples.
One can also compute the asymptotic variance-covariantéxnoé the estima-
tors based on the LS schemes easily, leading to explicittaarign of standard
errors and hypothesis tests. This is another advantagesé thS schemes over
the MLEs obtained using the EM algorithm.

3.3. Inferencefor Delay Distributions

Let X} denote the (unobservable) delay on lihkand let the cumulative delay
accumulated from the root node to the receiver node Y, = Zkepmr X,
whereP, , denotes the path from nodeto noder. The observed data are end-
to-end delays consisting &f. for all the receiver nodes. A common approach for
inference that can accommodate the heavy-tailed naturgexfiet measurements
is based on discretizing the continuous delays using a canbimosizeq. Let
Xy € {0,q,2q,...,bq} be the discretized delay accumulated on linkwherebq

is the maximum delay. Let (i) = P{X, = iq}. Our objective is to estimate
the delay distributions or they(i)'s for £ € £ andi in {0,1,...,b} using the
end-to-end datd;.s.

Let @, = [ak(0), ax(1),...ar(b)] and leta = [ay), &7, .. "&iEI]/' The ob-
served end-to-end measurements consist of the number e$ taach possible
outcomey was observed from the set of outcondés for a given schemé. Let
Né? denote these counts. These are distributed as multinoamdom variables
with corresponding path-level probability(i; @). So the log-likelihood is given

by
W&GY) =D > Neloglye(7: @)).
ceC jeye

In principle, one can maximize it numerically to get the MLEs in the loss

case, this can be viewed as an instance of a missing dateproéhd the EM al-
gorithm provides a convenient approach for computing theéEBILThis has been
studied in the literature (Lawrence, Michailidis, and N&®03) for full multicast

experiments and Lawrence et al. (2005a) for flexicast erpents). However, the
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computations in the E-step are quite involved, so it can veoilly with very small
networks for full multicast experiments. The use of the EMogithm is more
manageable when coupled with the flexicast experiment&Jaut then it is prac-
tical only in moderate-sized networks. There have been$teuestimation meth-
ods that have been proposed in the literature for the fulticasdt situation. The
first, by LoPresti et al. (2002), tries to mimic the cleveralithm for the loss case
in Caceres et al. (1999) and relies on solving higher-ordgmmmials. However,
this algorithm does not use all the data and can be very ireffi(Lawrence et al.
(20054a)). Liang and Yu (2003) proposed a pseudo-likelihmethod where one
considers only data from all pairs of probes and ignoresting and higher order
information. The all-pairs-bicasts by Liang and Yu (20G8%imilar in spirit to a
flexicast experiment with all pairs of bicasts, althoughytivél all be independent
in the flexicast set up. Also, as we showed earlier, one camasy fewer inde-
pendent bicasts than all possible pairs to estimate thelktdy parameters. Even
then, the complexity of the EM algorithm grows exponenyialith the number
of layers in the tree.

To handle larger networks, Lawrence et al. (2005a) develapgrafting
method which fits the EM to subtrees and uses a heuristic rddihsed on a
fixed point algorithm to combine the results across the selstrThis is a very fast
algorithm, and extensive numerical work has shown thamnitallssample perfor-
mance is favorable compared to the estimator in Lo Presti. ¢1899) and the
pseudo-likelihood estimator in Liang and Yu (2003). Furttiee efficiency loss is
relatively small compared to the full MLE.

Lawrence et al. (2005a) also studied inference for contisutelay distribu-
tions and developed moment-based estimation methodsdan#ans and vari-
ances of the delay distribution assuming a mixture modetHerindividual link-
delay distributions of the form

Fj(x) = pjooy + (1 = p;)Gj().
Here d;o, denotes point mass at O (i.e., no delay with probabjity and the

continuous part has a mean-variance relationship of the fgr= d)ug- where;
andV; are, respectively the mean and varianc&of- ).

4. An Application

We illustrate the results using real data collected fromcmapus network at the
University of North Carolina, Chapel Hill. The loss rateghis network were neg-
ligible, so we will focus on delays. We have collected extemamounts of data
but report here only selected results. See also Xi et al. @0 an application of
the results to network monitoring.
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Voice over IP (MolIP) or Internet telephony is a technologgttturns analog
voice signals into digital packets and then uses the Intéorteansmit them to the
intended receivers. The main difference with classicapiebny is that the call
does not use a dedicated connection with reserved bandvadtliinstead pack-
ets carrying the voice data are multiplexed in the netwottk wther traffic. The
quality of service (QoS) requirements in terms of packetdssand delays for this
application are significantly more stringent than other-neal time applications,
such as e-mail. Hence, assessing network links to ensuréhthaare capable of
supporting VoIP telephony is an important part of the te¢bgy The University
of North Carolina (UNC) is currently in the planning phasedefploying VolP
telephony. As part of this effort, monitoring equipment adtware capable of
placing such phone calls were installed throughout the casnmgtwork. Specif-
ically, the software allowed the emulation of VoIP callsveeén the monitoring
devices. It can then synchronize their clocks and obtaip aecurate packet loss
and delay measurements along the network paths.

Fifteen monitoring devices had been deployed in a variebudéliings and on
a range of different capacity links through the UNC netwdrke locations in-
cluded dorms, libraries, and various academic buildings. links included large
capacity gigabit links, smaller 100 megabit links, and omeless link. Monitor-
ing VoIP transmissions between these buildings allowedoesamine traffic in-
fluenced by the physical conditions of the link and the demsaridarious groups
of users. Figure 3 gives the logical connectivity of the UN&work. Each of the
nodes on the circle have a basic machine that can place a Yolegall to any
of the other endpoints. The three nodes in the middle aregbaite core (main
routers) of the network. One of these internal nodes, theeupputer linked to
Sitterson Hall, also connects to the gateway that exchanaffis with the rest of
the Internet.

Fig. 5. Traffic trace of packet delays generated by a singmeltall across the UNC network.

The data were collected using a tool designed by Avaya Labtefiing a
network’s readiness for VoIP. There are two parts to this. téiost, there are the
monitoring devices that are computers deployed througth@utetwork with the
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capability of exchanging VolP-style traffic. These devingsan operating system
that allows them to accurately measure the time at which giackre sent and
received. The machines collect these time stamps and réport back to the

second part of the system: the collection software. This\&o€ remotely controls

the devices and determines all the features of each call,asisource-destination
devices, start time, duration, and protocol which incluthesinter-packet time

intervals. The software collects the time stamps when tlie aee finished and

processes them. The processing consists of adjustingntieestamps to account
for the difference among the machines’ clocks, and therutatiog the one-way

end-to-end delays.

Old East Hinton

0.3 0.3
0.25 0.25

0.2 S 02

P(X>q)

x
0.15 g o1s
0.1 01
0.05 0.05

s ssssttttthoh sssssttttthh

Smith South

0.3 0.3
0.25 0.25

>q)

0.2 T 02
x x
2015 015

0.1 0.1

0.05 0.05
s s s s sttt tthh s s s s sttt tthh
Fig. 6. Probability of large delay throughout 2/26/2005 @&)L/2005 (t), and 3/3/2005 (h) at two
dorms, Old East and Hinton and two university buildings, t8@nd Smith. s, t and h, denote Saturday,

Tuesday and Thursday, respectively. On the y-axis, theghibty of a delay larger than 1 ms is
depicted.

Figure 5 shows the delays for the packets of one phone call)(Hetween two
devices. The data contain information about the entire pativeen a pair of end-
points, which spans several links. For example, a phoneptaded between the
dorm and the library follows a path that goes through thremnmuters. Many
of the features found in other types of network data can ba beee: heavy-
tailed marginal distributions and significant autocortiela between consecutive
observations. We will see that, by using the techniquesldped in this paper,
we are able to reconstruct link-level information abousgslfrom the end-to-end
path-level data.

For the data collection, Sitterson served as the root, andsed seven bicast
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pairs to cover the 14 receiver nodes:
C ={(4,5),(6,7),(8,10),(11,12), (13,14), (15,16), (17,18) }.

The network allowed only unicast transmission protocohack-to-back probing
was used to simulate multicast transmissions. The spameflietween the two
packets comprising the back-to-back probe was on the of@efiesv nanoseconds
while the time between successive probes was one tenth cbadePrior experi-

mentation using the call synthesis tool and this probindweteads us to believe
that the correlation between the two packets on the shamksd i§ close to one.
Most of the probing sessions resulted in 200 packets to egicligne session ran
considerably longer and produced more probes due to operaty).

In this paper, we consider data collected on 2/26/200528085, and 3/3/2005
(corresponding to a Saturday, Tuesday, and Thursday rasggr during the
Winter semester at UNC. In addition to methodology confifomatthis data will
allow us to contrast the weekend/weekday behavior of thearét The data col-
lection is somewhat irregular, but there are five colleditmoughout the day on
Saturday and Tuesday, and a morning and noon collection arstdihy. Analysis
was conducted using the discrete delay MLE approach. Thesizeiwas chosen
as approximately 1 ms. This results in most of the mass oioguim the ‘zero’
bin, which gives us a useful statistic to track over time.

Figure 6 gives some selected results from this analysi Bacrepresents the
probability of a delay of one unit or larger in each of fourdtions for each time
period. Some interesting results can be noted. The uniydnsildings South and
Smith both show very few delays due to limited traffic on theug#ay collections;
there are very small probabilities of delays, half of a petoeless, throughout the
day. The weekdays show a typically diurnal pattern with &pe@day that tapers
off. In many respects, the dorms, Old East and Hinton, shqwesipe patterns. The
activity on the weekend is not much less than during the wBeking the week,
the traffic, particularly at Hinton the large freshman doactually dips during the
day when the students are busy with classroom activitiesiaas at night.

Figure 7 shows partial results from a more detailed anabfdilse data. Here
the unit size is about half that of the previous analysis. fflbés give the first five
bins on the Hinton and South links on Saturday and Tuesdage@/éhat the whole
distribution is relatively stable on the dorm link despite tweekend/weekday
difference. In the office building, we see the mass shift autifrom Saturday
to Tuesday, but most of the mass still falls within the firseflvins indicating
fairly good link performance. Additional analyses of the ONetwork data can
be found in Lawrence et al. (2005a, 2005b)).
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Fig. 7. Detailed distributions with unit sizes of .5 ms at téim and South on Saturday, 2/26, and
Tuesday, 3/1, during the mid-afternoon.

5. Concluding Remarks

This paper has provided an overview of network tomograpliyssome of the in-
teresting statistical issues that arise from the invereblpms. The discussion so
far assumed that the routing matrix (logical topology) i®kn or can be deter-
mined easily. This is sometimes possible as the tracerooteliased on the In-
ternet control message protocol (ICMP), reports all thevoek devices (routers
and hosts) along a node. Unfortunately, many routers haabltid the protocol
and do not respond to the traceroute requests. As a reselle tias been a lot
of interest in developing tools for topology identificatidfarious statistical tech-
nigues such as clustering, maximum likelihood, and Bayesiathods have been
used, based on measurements from active tomography expsiisee Coates et
al. (2002b), Castro et al. (2004), Rabbat et al. (2002), héd. (2004) and ref-
erences therein). However, the ill-posed nature of thelproland its exponential
complexity make topology identification very challenging.

The tools and techniques that have been developed thus/aphaved useful
for characterizing network performance, detecting an@sauch as congestion,
and capacity planning. Nevertheless, some of the undgrgasumptions, espe-
cially those dealing with the spatio-temporal behaviog, ssmewhat restrictive
and merit further study. Another on-going challenge (largmaddressed in the
literature) is the lack of distributed algorithms. All theoposed methods require
the existence of a central data repository, which limitsathplicability of tomog-
raphy techniques to on-line network monitoring. Moreovast algorithms are
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critical for implementing the techniques in real time. Téfere, useful method-
ology needs to strike a balance between computational exitphand statistical
efficiency.
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